Printed	Pages	-4
---------	--------------	----

Roll No.:

328511(28)

B. E. (Fifth Semester) Examination, 2020

(Old Scheme)

(EEE, Et& Fiengg. Branch)

LINEAR INTEGRATED CIRCUITS & APPLICATIONS

In the Allowed Three hours on M. (1)

Maximum Marks : 80

Minimum Pass Marks: 28

Note: Part (a) of each question is compulsory.

Attempt any two parts (b), (c) and (d).

Assume suitable data if necessary.

ian kangai na distancia di Sarati a di Janata an Lapun kana

- 1. (a) Define "input loffset voltage" and stinput offset current" and a second stage of the second stage o
 - (b) Discuss the DC and AC characteristics of an OP-AMP.

(328511(28)

PTO

2

7

2	

- (c) Derive the expression for the impedance and output impedance of an operational amplifier in inverting amplifier configuration. Compare them with those of non-inverting configuration.
- (d) Explain the input offset voltage compensation techniques used in OP-Amp.

7

2

7

7

Unit-II

- 2. (a) What are the advantages of using a voltage follower amplifier?
 - (b) Define CMRR. Mention the limitations of a differential amplifier. Draw and deduce the expression for the output voltage of a differential amplifier using OP-AMP.
 - (c) Draw and explain the operation of a current-to-voltage convertor with grounded load. What are the applications of V-to-I convertors?
 - (d) Design a differentiator to differentiate an input signal that varies in frequency from 10 Hz 1 kHz. The input is a sine wave peak to peak amplitude 3 V at 200 Hz. Sketch the output voltage waveform.

[3]

Unit-III

- 3. (a) Define "Sweep time" and "Fly back time".
 - (b) Draw the circuit of square wave generator using OP-AMP and explain its operation.
 - (c) Draw and explain current sweep generator in detail.

 Also explain how the linearity of current sweep generators can be improved, explain linearization technique using constant current source.
 - (d) State and prove that clamping circuit theorem.

Unit-IV

- **4.** (a) What do you mean by transition time and settling time?
 - (b) With the help of neat circuit diagram and waveform explain the working of a collector-coupled monostable multivibrator. Also derive the expression for gate width of monostable multivibrator.
 - (c) With the help of a schematic diagram explain how the commutating capacitors reduce the transition time?
 - (d) Draw and explain Schmitt trigger circuit.

7

7

2

7

2

7

328511(28)

328511(28) PTO

Unit-V

2

7

7

7

5.	(a) List the performance parameters of voltage regulator.
	(b) Explain in detail along with neat circuit diagram of transistorized series regulator.
	(c) Explain how adjustable regulator IC works. Derive the expression for the output voltage for LM317 adjustable voltage regulator.
	(d) Design an adjustable voltage regulator to satisfy the following specifications:
	(i) Output voltage $V_0 = 5$ to 12 V (ii) Output current $I_0 = 1.0$ A (iii) Voltage regulator is LM317
	(a) With the help of a wilminday designing application. Interconstituted for exprectors technically frontistion. Learn